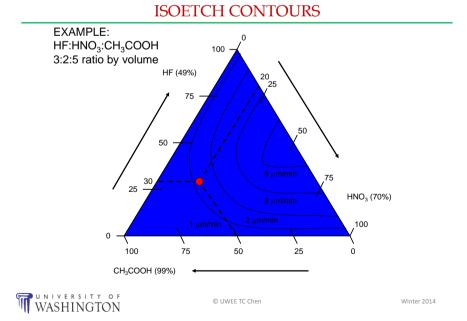

EE 527 MICROFABRICATION

Lecture 21 Tai-Chang Chen University of Washington


HNA ETCHING OF SILICON - 7

Region (1)

- For high HF concentrations, contours are parallel to the lines of constant HNO₃; therefore the etch rate is controlled by HNO₃ in this region.
- Leaves little residual oxide; limited by oxidation process.
- Region 2
 - For high HNO₃ concentrations, contours are parallel to the lines of constant HF; therefore the etch rate is controlled by HF in this region.
 - Leaves a residual 30-50 Angstroms of SiO₂; self-passivating; limited by oxide dissolution; area for polishing.
- Region
 - Initially not very sensitive to the amount of H₂O, then etch rate falls of sharply for 1:1 HF:HNO₃ ratios.

© UWEE TC Chen

- second most commonly used industrial chemical
- NFPA704M code = 4-0-0-OXY; CAS # [7697-37-2]
- colorless liquid, often reddish-brown from dissolved NO₂
- light exposure produces: $4HNO_3 \rightarrow 4NO_2 + 2H_2O + O_2$
- standard reagent concentration is 68-70%, red bottle cap
- while fundamentally a strong mineral acid, it is also considered to be a strong oxidizer

© UWEE TC Chen

Winter 2014

NITRIC ACID (HNO₃) - 2

- primary hazards:
 - reacts with metals and nonmetals, releases NO (3-0-3-XY) and/or NO₂ (3-0-0-XY)
 - concentrated HNO₃ will spontaneously ignite wood, cellulose products
 - concentrated HNO₃ oxidizes proteins
 - concentrated HNO₃ acts as both an acid and an oxidizer!!

© UWEE TC Chen

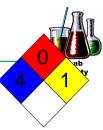
HYDROFLUORIC ACID (HF) - 1

- pure HF is a colorless gas above 20C, TLV = 2.5 ppm
- NFPA704M code = 4-0-1; CAS # [7664-39-3]
- a strong dehydrating agent
- has a high affinity for water (hygroscopic)
- dissolved in H₂O it becomes a weak acid (it partially dissociates)
 BUT IT IS STILL EXTREMELY DANGEROUS!!
- standard reagent concentration is 49%, white bottle cap
- HF dissolves glasses:
 - $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$
- concentrated HF must be stored in polypropylene containers!!

© UWFF TC Chen

• commercially used for etching glass

WASHINGTON


	HYDROFLUORIC ACID (HF) - 2	
•		Lab afety
	 HF vapor produces edema of the lungs and can permanently damage the cornea. 	
	 HF is extremely dangerous to skin contact, the worst of all acids in terms of damage to tissue, can produce very severe, painful burns. 	
	 HF has a slight anesthetizing effect, pain is often not noticed until the acid has penetrated a large distance into tissue, often down into bone material where it reacts with Ca and Mg to form fluorides. 	
	 Because of small size of molecule, HF dissolves easily though pores of skin and cell membranes, and also through many plastics. 	
	– Use Trionic or heavy neoprene gloves when dealing with HF!!	
	 At present there exists no effective remedy for HF burns 	
	 Some suggest an ointment of 3 oz. magnesium oxide, 4 oz. heavy mineral oil, and 11 oz. white vaseline is helpful. 	
	 Commercially available calcium gluconate cream is commonly suggested to treat HF burns or exposures. 	
NIV	ERSITY OF	

© UWEE TC Chen

Winter 2014

 4_{\varDelta}

WET ETCHING OF SIO₂

- Almost always requires HF in some form:
 - HF : H₂O
 - HF : NH₄F (Buffered Oxide Etch = BOE)
- Etch rate is highly dependent upon how the SiO₂ was created:
 - Thermal oxidation creates the most dense and electronically suitable oxide for MOSFETs with generally the slowest etch rate.
 - LPCVD deposited oxides are generally less dense, have more electronic defects, and etch quicker than thermal oxides.
 - Sputtered oxides are generally less dense still, have even more electronic defects, and etch still faster than the LPCVD oxides.
 - Special glass insulating layers have different etch rates still:
 - Low Temperature Oxide (LTO)
 - Phospho-Silicate Glass (PSG)

WASHINGTON

© UWEE TC Chen

Winter 2014

BUFFERED OXIDE ETCH (BOE)

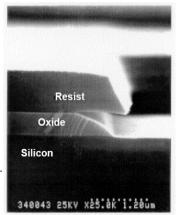
- Normal etching of SiO₂ will deplete the F⁻ ion concentration, leading to an etch rate which changes over time.
- This can be fixed by buffering the HF with another source of the $\rm F^-$ ion: $\rm NH_4F.$
- Buffering with NH₄F also slows the etch rate and results in more polishing of the Si surface (atomically flatter).
- Reactions:
 - Etching: $SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$
 - Buffering: $NH_4F \leftrightarrow NH_3 + HF$
- Many commercial compositions exist:
 - 5:1, 6:1, 7:1, 10:1, 20:1, 30:1, 50:1, and 100:1.
 - Ratios are NH_4F (40% in H_2O) to HF (49% in H_2O)

© UWEE TC Chen

BOE ETCHING OF THERMAL (NATIVE GROWN)

- Note that in the literature, 10:1 BOE is not the same as 10:1 HF!
 - 10:1 BOE means 10 NH₄F (40%) to 1 HF (49%)
 - 10:1 HF means 10 H₂O to 1 HF (49%)
- Some typical etch rates at 20°C:

Etch Solution	Etch Rate – thermal SiO ₂
6:1 BOE	90 nm/min = 1.50 nm/sec
10:1 BOE	53 nm/min = 0.88 nm/sec
20:1 BOE	30 nm/min = 0.50 nm/sec
10:1 HF	28 nm/min = 0.47 nm/sec
50:1 HF	5.0 nm/min = 0.08 nm/sec



© UWEE TC Chen

Winter 2014

PHOTORESIST UNDERCUTTING BY BOE

- BOE aggressively etches along the photoresist interface.
- Photoresist needs to be hard baked prior to BOE etching.
- Photoresist adhesion also needs to be superb. Primers such as HMDS are useful in achieving this.
- Photoresist puckering along feature edges usually indicates significant undercutting is present.

© UWEE TC Chen

BUFFERED OXIDE ETCH (BOE)

- a solution of (40%) NH_4F and (49%) HF
- 6:1 is the fastest etching (~2 nm/sec grown SiO₂ at 25°C)
- 10:1 is common
- 25:1 is also used for slower etches
- NFPA704M code = 4-0-1
- industry standard solution for etching SiO₂
- NH₄F is a solid crystal, but dissolved in H₂O, it produces some HF and fluorine ion; NH₄F is normally used at 40% concentration.
- NH₄F provides buffering of the fluoride ion. As SiO₂ etching proceeds, the NH₄F replenishes the fluoride ion that is consumed in the creation of SiF₄. This keeps the etch rate more constant.
- primary hazards:
 - the same as for hydrofluoric acid, HF
 - Use Trionic or heavy neoprene gloves when dealing with BOE!!

© UWEE TC Chen

Winter 2014

WET ETCHING OF CHROMIUM (CR)

- HCl (standard 37% concentration, undiluted)
- HNO₃ (standard 70% concentration, undiluted)
- Commercial chromium etchants are usually best to achieve a uniform rate and reproducibility:
 - Cyantek CR-9 chromium etchant is commonly used.

© UWEE TC Chen

HYDROCHLORIC ACID (HCL)

- pure HCl is a strong-smelling, colorless gas
- TLV = 5 ppm, exposure to > 1500 ppm is usually fatal
- extremely soluble in H₂O
- NFPA704M code = 3-0-0; CAS # [7647-01-0]
- technical grade HCl is slightly yellow due to Fe⁺⁺ impurities
- standard reagent concentration is 37%, blue bottle cap
- primary hazards:
 - corrosive effect on metals
 - vapor toxicity:
 - 1-5 ppm = limit of odor
 - 35 ppm = irritation of throat
 - 50 ppm = barely tolerable
 - 1000 ppm = fatal via lung edema

© UWEE TC Chen

3 0 *